Nuclear waste recycling is a critical avenue of energy innovation – TechCrunch

by Joseph K. Clark

Second, the federal government determines what to do with it. Power plant operators have paid over $40 billion into the Nuclear Waste Fund so the government can handle it. The idea was to bury it in the “deep geological repository” that Yucca Mountain, Nevada embodied, but this has proved politically impossible. Nevertheless, $15 billion was spent on the scoping.

Third, due to the Energy Department’s inability to manage this waste, it simply accumulates. According to that agency’s most recent data release, some 80,000 metric tons of spent fuel—hundreds of thousands of fuel assemblies containing millions of fuel rods—is waiting for a final destination.

And here’s the twist ending: those nuclear plant operators sued the government for breach of contract, and in 2013, they won. Several hundred million dollars is paid out to them each year by the U.S. Treasury as part of a series of settlements and judgments. The running total is over $8 billion.

Nuclear waste

I realize this story sounds a little crazy. Am I saying that the U.S. government collected billions of dollars to manage nuclear waste, then spent billions of dollars on a feasibility study only to stick it on the shelf, and now is paying even more for this failure? Yes, I am.

Fortunately, all the aggregated waste occupies a relatively small area, and temporary storage exists. Without an urgent reason to act, policymakers generally will not. While attempts to find long-term storage will continue, policymakers should look towards recycling some of this “waste” into usable fuel. This is an old idea. Only a tiny fraction of nuclear energy is consumed to generate electricity.

Proponents of recycling envision reactors that use “reprocessed” spent fuel, extracting energy from the 90% of it left over after burn-up. Even its critics admit that the underlying chemistry, physics, and engineering are technically feasible and instead assail the disputable economics and perceived security risks.

So-called Generation IV reactors come in all shapes and sizes. The designs have been around for years—in some respects, all the way back to the dawn of nuclear energy—but light-water reactors have dominated the field for various political, economic, and strategic reasons. For example, Southern Company’s twin conventional pressurized water reactors under construction in Georgia boast a capacity of just over 1,000-megawatt (or 1 gigawatt), the standard for Westinghouse’s AP 1000 design.

Many Gen-IV designs can either explicitly recycle used fuel or be configured to do so. In contrast, next-generation plant designs are a fraction of the size and capacity. Also, they may use different cooling systems: Oregon-based NuScale Power’s 77-megawatt small modular reactor, San Diego-based General Atomics’ 50-megawatt helium-cooled fast, modular reactor, Alameda-based Kairos Power’s 140-megawatt molten fluoride salt reactor, and so on all have different configurations that can fit other business and policy objectives. On June 3, TerraPower (backed by Bill Gates), GE Hitachi, and the State of Wyoming announced an agreement to build a demonstration of the 345-megawatt Natrium design, a sodium-cooled fast reactor.

Natrium is technically capable of recycling fuel for generation. California-based Oklo has agreed with Idaho National Laboratory to operate its 1.5-megawatt “microreactor” from used-fuel supplies. The self-professed “preferred fuel” for New York-based Elysium Industries’ molten salt reactor design is spent nuclear fuel, and Alabama-based Flibe Energy advertises the waste-burning capability of its thorium reactor design.

Whether advanced reactors rise or fall does not depend on resolving the nuclear waste deadlock. Though such reactors may be able to consume spent fuel, they don’t necessarily have to. Nonetheless, incentivizing waste recycling would improve their economy. “Incentivize” here is the code for “pay.” Policymakers should consider ways Washington can make it more profitable for a power plant to recycle fuel than to import it—from Canada, Kazakhstan, Australia, Russia, and other countries.

Political support for advanced nuclear technology, including recycling, is more profound than expected. In 2019, the Senate confirmed Dr. Rita Baranwal as the Assistant Secretary for Nuclear Energy at the Department of Energy (DOE). A materials scientist by training, she emerged as a champion of recycling. The new Biden administration has continued broadly bipartisan support for advanced nuclear reactors in proposing in its Fiscal Year 2022 Budget Request to increase funding for the DOE’s Office of Nuclear Energy by nearly $350 million. The proposal includes specific funding increases for researching and developing reactor concepts (plus $32 million), fuel cycle R&D (plus $59 million), advanced reactor demonstration (plus $120 million), and tripling funding for the Versatile Test Reactor (from $45 million to $145 million, year over year).

In May, the DOE’s Advanced Research Projects Agency-Energy (ARPA-E) announced a new $40 million program to support research in “optimizing” waste and disposal from advanced reactors, including through waste recycling. Notably, the announcement explicitly states that the lack of a solution to nuclear waste today “poses a challenge” to the future of Gen-IV reactors. The debate is a reminder that recycling, in general, is a very messy process. It is chemical-, machine-, and energy-intensive. Recycling, from critical minerals to plastic bottles, produces new waste, too. Today, federal and state governments actively recycle these other waste streams and should be equally involved in nuclear waste.

Related Posts